Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 1471-1476

Synthesis of cinnamic acids and related isosteres as potent and selective $\alpha v \beta 3$ receptor antagonists

Thomas D. Penning,^{a,*} Mark A. Russell,^a Barbara B. Chen,^a Helen Y. Chen,^a Bipin N. Desai,^a Stephen H. Docter,^a David J. Edwards,^a Glen J. Gesicki,^a Chi-Dean Liang,^a James W. Malecha,^a Stella S. Yu,^a V. Wayne Engleman,^b Sandra K. Freeman,^b Melanie L. Hanneke,^b Kristen E. Shannon,^b Marisa M. Westlin^b and G. Allen Nickols^b

^aDepartment of Medicinal Chemistry, Pfizer Global Research & Development, 4901 Searle Parkway, Skokie, IL 60077, USA
^bDepartments of Discovery Pharmacology and Oncology, Pfizer Global Research & Development, 700 Chesterfield Village Parkway,
Chesterfield, MO 63198, USA

Received 15 October 2003; revised 22 December 2003; accepted 10 January 2004

Abstract—We describe a series of conformationally-restricted cinnamic acid peptidomimetics as well as several cinnamic acid isosteres, including 3-phenylpropionic acids, 2-amino-3-phenylpropionic acids, phenoxyacetic acids and 2-phenylcyclopropylcarboxylic acids. Several analogues demonstrated low to sub-nanomolar potencies against $\alpha_{\nu}\beta_{3}$ and greater than 200-fold selectivity against the other β_{3} integrin $\alpha_{IIb}\beta_{3}$. In whole 293 cells, many of these analogues also showed modest selectivity against other α_{ν} integrins such as $\alpha_{\nu}\beta_{1}$ and $\alpha_{\nu}\beta_{5}$. These compounds were synthesized from readily available starting materials using either Heck or Mitsunobu coupling conditions.

© 2004 Elsevier Ltd. All rights reserved.

The integrin $\alpha_v \beta_3$ is a non-covalently linked, heterodimeric transmembrane receptor found on the surface of activated endothelial cells, smooth muscle cells and many tumor cells. $\alpha_v \beta_3$ recognizes the arginine-glycineaspartic acid (RGD) tripeptide sequence on numerous extracellular matrix proteins. This process allows endothelial cells and tumor cells to interact with a wide variety of extracellular matrix components such as vitronectin, fibronectin, fibrinogen, thrombospondin, osteopontin, bone sialoprotein, and denatured collagen. Angiogenesis, a process extensively studied over the last two decades, is the mechanism by which new blood vessels are formed from pre-existing blood vessels. Antagonists of $\alpha_{\nu}\beta_{3}$ have demonstrated potent anti-angiogenetic activity, and thereby have potential utility in inhibiting tumor growth.² $\alpha_v \beta_3$ is also the predominant integrin found on the surface of osteoclasts, which are responsible for cellular attachment, and subsequent bone resorption.³ Antagonists of $\alpha_v \beta_3$ have been shown to block the degradation of bone in animal models of osteoporosis. 4 $\alpha_v \beta_3$ also plays a significant role in other pathophysiological conditions, including restenosis after angioplasty, 5 ocular neovascularization 4,6 and rheumatoid arthritis. 7 Antagonists of this integrin may prove to be beneficial in the treatment of these diverse disease states.

We have previously described an RGD-based peptidomimetic $\alpha_v \beta_3$ antagonist, SC-68448, which demonstrated anti-tumor efficacy in a mouse Leydig cell tumor model. We now report a series of conformationally-restricted cinnamic acid analogues in which the glycine-3-aminopropionic acid functionality was replaced by the bioisosteric 4-aminocinnamic acid moiety. This work was also extended to additional isosteres, including

^{*}Corresponding author at present address: Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA. Tel.: +1-847-938-6707; fax: +1-847-935-5165; e-mail: thomas.penning@abbott.com

3-phenylpropionic acids, phenoxyacetic acids and 2-phenylcyclopropylcarboxylic acids.

The cinnamic acid analogues described were synthesized as shown in Scheme 1. An appropriately substituted 4bromoaniline or 4-bromo-1-nitrobenzene was coupled with either methyl or ethyl acrylate under standard palladium-catalyzed Heck conditions to give the corresponding 4-amino or 4-nitrocinnamic esters. In the case of the nitro analogues, reduction using SnCl₂ provided the 4-amino ester 50. Coupling of 50 with a 3-guanidinobenzoic acid 51 using isobutyl chloroformate, followed by saponification, provided the desired cinnamic acid analogues. 3-Phenylpropionic acid, phenoxyacetic acid and 2-phenylcyclopropylcarboxylic acid analogues were synthesized as described in Scheme 2. The 4-nitrocinnamic acid esters were hydrogenated to provide phenylpropionic ester 52, while cyclopropanation using diazomethane and reduction with SnCl₂ gave the corresponding cyclopropyl analogue 53. Coupling of 52 or 53 with a 3-guanidinobenzoic acid 51, using isobutyl chloroformate, followed by saponification, gave the desired peptidomimetics. The phenoxyacetic acid analogues were synthesized from the appropriate 4-nitrophenol. Mitsunobu coupling with an α -hydroxyester gave, after reduction, the 4-aminophenoxyacetic ester 54. Coupling and saponification as before, provided the desired acids. The α -aminopropionic acid analogues were synthesized as shown in Scheme 3. Palladium-catalyzed coupling of 55 with a 4-nitro-1-bromobenzene gave amino ester 56. Alternately, 56 could be prepared from a 4-nitro benzaldehyde and N-benzoyl glycine. Reduction and derivatization of the α -amino group gave 57. Coupling and saponification provided the desired α -amino acid analogues.

A series of substituted cinnamic acids containing a simple phenylguanidine was synthesized and tested in both the $\alpha_v\beta_3$ and $\alpha_{IIb}\beta_3$ solid-phase receptor binding assays (SPRA).⁴ Our goal was to demonstrate at least 100-fold selectivity over the related platelet integrin, $\alpha_{IIb}\beta_3$. These analogues, which explored phenyl ring substituent effects, are detailed in Table 1. The simple cinnamic acid analogue 1 showed only moderate $\alpha_v\beta_3$ potency and no selectivity over $\alpha_{IIb}\beta_3$. Several substituents, including 2-CO₂H (6), 3-methyl (8), 3-ethyl

Scheme 1. (a) Methyl or ethyl acrylate, cat. $Pd(OAc)_2$, $P(o-tol)_3$, $i-Pr_2NH$, Δ ; (b) $SnCl_2$, EtOH, Δ ; (c) **51**, isobutyl chloroformate, N-methylpiperidine, CH_2Cl_2 ; (d) LiOH or NaOH.

$$CO_{2}R^{2} \longrightarrow d,e \longrightarrow G \longrightarrow H_{2}N \longrightarrow R^{1}$$

$$CO_{2}R^{2} \longrightarrow d,e \longrightarrow G \longrightarrow H_{2}N \longrightarrow R^{1}$$

$$CO_{2}R^{2} \longrightarrow d,e \longrightarrow G \longrightarrow H_{2}N \longrightarrow R^{1}$$

$$CO_{2}R^{2} \longrightarrow d,e \longrightarrow G \longrightarrow H_{2}N \longrightarrow R^{1}$$

$$CO_{2}R^{2} \longrightarrow d,e \longrightarrow G \longrightarrow H_{2}N \longrightarrow R^{1}$$

$$CO_{2}R^{2} \longrightarrow d,e \longrightarrow G \longrightarrow H_{2}N \longrightarrow R^{1}$$

$$CO_{2}R^{2} \longrightarrow d,e \longrightarrow G \longrightarrow H_{2}N \longrightarrow H$$

Scheme 2. (a) H_2 , Pd/C, EtOH; (b) CH_2N_2 , $Pd(OAc)_2$, Et_2O ; (c) $SnCl_2$, EtOH, Δ ; (d) 51, isobutyl chloroformate, N-methylpiperidine, CH_2Cl_2 ; (e) LiOH or NaOH; (f) $HOCH_2CO_2R^2$, DEAD, Ph_3P , THF.

Scheme 3. (a) 55, cat. Pd(OAc)₂, P(o-tol)₃, DMF, Δ; (b) (1) Ac₂O, N-benzoylglycine, Δ; (2) MeOH, K₂CO₃, Δ; (c) H₂, Pd/C, MeOH; (d) XCl; (e) 51, isobutyl chloroformate, N-methylpiperidine, CH₂Cl₃; (f) LiOH or NaOH.

Table 1. SPRA data for simple guanidine cinnamic acid analogues

		IC ₅₀ (nM) ^a			
Compd	\mathbb{R}^1	$\alpha_v \beta_3 SPRA$	α _{IIb} β ₃ SPRA		
1	Н	10.6	7.0		
2	2-Me	73	121		
3	2-C1	23	45		
4	2-CF ₃	122 (1)	152 (1)		
5	2-OMe	9.7	69		
6	2-CO ₂ H	1.2	9.1		
7	$2-CO_2Me$	32 (1)	80 (1)		
8	3-Me	4.0	9.6		
9	3-Et	3.0	15.1		
10	3-F	7.1	14.1		
11	3-C1	3.5	11		
12	$3-CF_3$	155 (2)	670 (2)		
13	3-OMe	10.3	38		
14	2,6-diCl	1830 (1)	25,000 (1)		
15	3,5-diMe	23	2170		

^a Average of at least three determinations except where noted in parentheses.

(9), and 3-chloro (11) showed increased $\alpha_v \beta_3$ potency in the 1-4 nM range. However, these analogues were still relatively non-selective versus $\alpha_{IIb}\beta_3$. Although 3,5-disubstituted analogue 15 was less potent for $\alpha_{v}\beta_{3}$, it did demonstrate nearly 100-fold selectivity. Incorporation of a cyclic guanidine (both tetrahydropyrimidine and dihydroimidazole) was found to provide a significant increase (5- to 10-fold, on average) in potency, as well as an increase in selectivity (Table 2). Several analogues demonstrated sub-nanomolar potency as well as $\alpha_{IIb}\beta_3$ selectivity of > 200-fold. As before, the 2-CO₂H (22), 3methyl (24), 3-ethyl (17,25), and 3-chloro (16,26) analogues showed superior potency, all in the 0.3 to 0.5 nM range. As before, 3,5-disubstitution gave the best selectivity, but with diminished potency. Selected analogues were also assayed for binding to $\alpha_v\beta_1$ -, $\alpha_v\beta_3$ -, and $\alpha_v\beta_5$ expressing 293 cells⁹ to probe selectivity against other $\alpha_{\rm v}$ integrins (Table 3). In general, whole cell $\alpha_v \beta_3$ potencies were similar to those obtained in the SPRA assay and $\alpha_{\rm v}\beta_{\rm 5}$ potencies were all within an order of magnitude of $\alpha_{\nu}\beta_{3}$. However, $\alpha_{\nu}\beta_{1}$ potencies were significantly lower,

Table 2. SPRA data for cyclic guanidine cinnamic acids

			$IC_{50} (nM)^a$			
Compd	n	\mathbb{R}^1	$\alpha_{\rm v}\beta_{\rm 3}~{\rm SPRA}$	α _{IIb} β ₃ SPRA		
16	1	3-C1	0.31	80		
17	1	3-Et	0.49	125		
18	1	3,5-diMe	2.8	1830		
19	2	H	2.0	528		
20	2	2-C1	3.9	641		
21	2	2-OMe	2.2	661		
22	2	2-CO ₂ H	0.45	97		
23	2	2-CO ₂ Me	5.7	817		
24	2	3-Me	0.46	181		
25	2	3-Et	0.53	439		
26	2	3-C1	0.48	233		
27	2	3,5-diMe	4.9	8270		

^a Average of at least three determinations.

Table 3. 293 Cell selectivity data for cinnamic acid analogues

Compd	IC ₅₀ (nM) ^a					
	$\alpha_{\rm v}\beta_1$ 293 cell	$\alpha_v \beta_3$ 293 cell	α _v β ₅ 293 cell			
1	109	13.1	39			
2	505	19.4	49			
10	426	9.6	45			
11	426	5.9	60			
15	2070	21	116			
18	264	3.0	29			
19	219	1.8	7.6			
20	507	3.8	26			
24	60	1.7	9.6			
26	85	1.7	13.0			

^a Average of at least three determinations.

generally 50- to 100-fold. Table 4 highlights both the SPRA data for $\alpha_{\nu}\beta_{3}$ and $\alpha_{IIb}\beta_{3}$, as well as 293 whole cell binding data for $\alpha_{\nu}\beta_{1}$, $\alpha_{\nu}\beta_{3}$ and $\alpha_{\nu}\beta_{5}$ for a series of cinnamic acid isosteres. In general, similar trends were observed between the cinnamic acid series described in the previous Tables and the phenylpropionic acid, phenoxyacetic acid and phenylcyclopropylcarboxylic acid

series described in Table 4. Phenyl ring substitution tended to increase $\alpha_v \beta_3$ potency and incorporation of a cyclic guanidine improved both $\alpha_v \beta_3$ potency and selectivity. While the phenylpropionic acid analogues 28–32 were significantly less potent than the corresponding cinnamic acid analogues, the phenoxyacetic acid class demonstrated improved potency, particularly when containing a 2-methoxy substituent and a cyclic guanidine (35). Cyclopropyl analogues (36,37), on the other hand, showed diminished potency. In general, in 293 cells, $\alpha_v \beta_3$ potency was similar to SPRA potency, while significant selectivity was observed versus $\alpha_v \beta_1$ and in many cases $\alpha_v \beta_5$, as well. Based on extensive literature precedence, an α-amino moiety was introduced to the phenylpropionic acid class (Table 5). While a simple αamino group showed poor potency (38), N-derivatized analogues showed excellent potency. Carbamates (40,41) and sulfonamides (43,44) demonstrated the optimal $\alpha_{\nu}\beta_{3}$ potency, while the potency of amides (39) and ureas (42) was somewhat diminished. However, most analogues in Table 5 showed relatively poor $\alpha_{\text{IIb}}\beta_3$ selectivity. Introduction of a cyclic guanidine dramatically increased $\alpha_v\beta_3$ potency to the sub-nanomolar level (46–48). In addition, 2-methoxy-substituted analogue 46, was not only a 0.16 nM $\alpha_v\beta_3$ antagonist, but also demonstrated >6000-fold selectivity over $\alpha_{\text{IIb}}\beta_3$. The p K_a -modulated imidazolone 49 also demonstrated good potency and selectivity. Unlike the compounds described in Table 4, in 293 cells, all α -amino analogues showed relatively poor selectivity versus the other α_v integrins.

In summary, we have developed a series of simple, readily accessible cinnamic acid analogues, and by appropriate phenyl substitution and guanidine manipulation have found several analogues with low to subnanomolar $\alpha_v \beta_3$ potency and > 200-fold selectivity over $\alpha_{\text{IIb}} \beta_3$. In addition, we have developed several new classes

Table 4. SPRA and whole cell data for cinnamic acid isosteres

				$IC_{50} (nM)^a$					
Compd	G	\mathbb{R}^1	X–Y	$\alpha_{v}\beta_{3}$ SPRA	$\alpha_{IIb}\beta_3 \; SPRA$	$\alpha_v\beta_1 \; 293 \; cell$	$\alpha_v\beta_3 \; 293 \; cell$	$\alpha_v \beta_5$ 293 cell	
28	H_2N H_2N H N	Н	-CH ₂ CH ₂ -	21	93	758 (2)	10.9	135 (2)	
29	H_2N N N	2-OMe	-CH ₂ CH ₂ -	24	172	ND	ND	ND	
30	H_2N H_2 N N	2-CO ₂ H	-CH ₂ CH ₂ -	9.0	57	ND	ND	ND	
31		2-OMe	-CH ₂ CH ₂ -	5.8	3190	162	5.6	16.6	
32	TN H	2-CO ₂ H	-CH ₂ CH ₂ -	6.1	4710	ND	ND	ND	
33	H_2N H_2N H	Н	-OCH ₂ -	19.1	128	351 (2)	11.9	144 (2)	
34	H_2N H_2N H N	2-OMe	-OCH ₂ -	3.2	54	222	4.3	102	
35	THE H	2-OMe	-OCH ₂ -	0.43	772	82	1.7	29	
36	H_2N N N	Н	\wedge	31	533	339 (2)	65	149 (2)	
37		Н	\wedge	19	4810	320	40	69	

ND, Not determined.

^a Average of at least three determinations except where noted in parentheses.

Table 5. SPRA and whole cell data for α-aminophenylpropionic acid analogues

Compd			X	$IC_{50} (nM)^a$				
	G	\mathbb{R}^1		$\alpha_v \beta_3 SPRA$	$\alpha_{IIb}\beta_3 \; SPRA$	$\alpha_v \beta_1$ 293 cell	$\alpha_v \beta_3$ 293 cell	$\alpha_v \beta_5$ 293 cell
38	H ₂ N H NH	-Н	-Н	4760 (1)	21900 (1)	ND	ND	ND
39	H ₂ N H NH	–Н	-C(O)Me	2.7	148	16 (2)	2.6	40 (2)
40	H ₂ N H	–Н	−CO ₂ <i>i</i> -Pr	0.80	22	0.47 (2)	2.6	0.76 (2)
41	H ₂ N H NH	-Н	−CO ₂ <i>t</i> -Bu	0.51	14.3	6.7	2.5	1.0
42	H ₂ N H NH	–Н	-C(O)NHt-Bu	3.2	285	4.8	2.9	3.0
43	H_2N N N	-Н	−SO ₂ Me	0.63	15.6	29	0.98	3.1 (2)
44	H_2N N N	-Н	−SO ₂ Ph	0.63	0.71	18.3 (2)	0.20	8.1
45	H ₂ N H NH	2-OMe	-CO ₂ <i>i</i> -Pr	1.1 (2)	253 (2)	1.1 (2)	0.32	0.38 (2)
46	TN H	2-OMe	-CO ₂ <i>i</i> -Pr	0.16	1000	0.68	0.35	0.41
47	H H H	-Н	−SO ₂ Ph	0.27	12.5	ND	ND	ND
48	H H N	-Н	−SO ₂ Ph	0.11	6.0	10.4 (2)	0.12	0.96 (2)
49	O H H N	-Н	−CO ₂ <i>i</i> -Pr	1.6	1270	17.7 (2)	0.94	0.89 (2)

ND, Not determined.

of $\alpha_{\nu}\beta_{3}$ antagonists that contain bioisosteres of the cinnamic acid moiety. Particularly promising was the α -aminophenylpropionic acid class which demonstrated excellent potency against $\alpha_{\nu}\beta_{3}$ as well as very good selectivity versus $\alpha_{IIb}\beta_{3}$.

References and notes

- (a) Horton, M. A. Int. J. Biochem. Cell Biol. 1997, 29, 721.
 (b) Felding-Habermann, B.; Cheresh, D. A. Curr. Opin. Cell Biol. 1993, 5, 864.
- 2. (a) Kisker, O.; Becker, C. M.; Prox, D.; Fannon, M.;

D'Amato, R.; Flynn, E.; Fogler, W. E.; Sim, B. K. L.; Allred, E. N.; Pirie-Shepherd, S. R.; Folkman, J. Cancer Res. 2001, 61, 7669. (b) Kumar, C. C.; Malkowski, M.; Yin, Z.; Tanghetti, E.; Yaremko, B.; Nechuta, T.; Varner, J.; Liu, M.; Smith, E. M.; Neustadt, B.; Presta, M.; Armstrong, L. Cancer Res. 2001, 61, 2232. (c) Kerr, J. S.; Slee, A. M.; Mousa, S. A. Exp. Opin. Invest. Drugs 2000, 9, 1271. (d) Mitjans, F.; Meyer, T.; Fittschen, C.; Goodman, S.; Jonczyk, A.; Marshall, J. F.; Reyes, G.; Piulats, J. Int. J. Cancer 2000, 87, 716. (e) Eliceiri, B. P.; Cheresh, D. A. Mol. Med. 1998, 4, 741. (f) Brooks, P. C.; Strömblad, S.; Klemke, R.; Visscher, D.; Sarkar, F. H.; Cheresh, D. A. J. Clin. Invest. 1995, 96, 1815. (g) Brooks, P. C.; Clark, R. A. F.; Cheresh, D. A. Science 1994, 264, 569.

^a Average of at least three determinations except where noted in parentheses.

- Nakamura, I.; Pilkington, M. F.; Lakkakorpi, P. T.; Lipfert, L.; Sims, S. M.; Dixon, S. J.; Rodan, G. A.; Duong, L. T. J. Cell Sci. 1999, 112, 3985.
- 4. (a) Lark, M. W.; Stroup, G. B.; Dodds, R. A.; Kapadia, R.; Hoffman, S. J.; Hwang, S. M.; James, I. E.; Lechowska, B.; Liang, X.; Rieman, D. J.; Salyers, K. L.; Ward, K.; Smith, B. R.; Miller, W. H.; Huffman, W. F.; Gowen, M. J. Bone Miner. Res. 2001, 16, 319. (b) Hartman, G. D.; Duggan, M. E. Exp. Opin. Invest. Drugs 2000, 9, 1281. (c) Engleman, V. W.; Nickols, G. A.; Ross, F. P.; Horton, M. A.; Griggs, D. W.; Settle, S. L.; Ruminski, P. G.; Teitelbaum, S. L. J. Clin. Invest. 1997, 99, 2284.
- (a) Bishop, G. G.; McPherson, J. A.; Sanders, J. M.; Hesselbacher, S. E.; Feldman, M. J.; McNamara, C. A.; Gimple, L. W.; Powers, E. R.; Mousea, S. A.; Sarembock, I. J. Circulation 2001, 103, 1906. (b) Keenan, R. M.; Lago, M. A.; Miller, W. H.; Ali, F. E.; Cousins, R. D.; Hall, L. B.; Hwang, S. M.; Jakas, D. R.; Kwon, C.; Louden, C.; Nguyen, T. T.; Ohlstein, E. H.; Rieman, D. J.; Ross, S. T.; Samanen, J. M.; Smith, B. R.; Stadel, J.; Takata, D. T.;

- Vickery, L.; Yuan, C. C. K.; Yue, T. L. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3171.
- (a) Riecke, B.; Chavakis, E.; Bretzel, R. G.; Linn, T.; Preissner, K. T.; Brownlee, M.; Hammes, H. P. Horm. Metab. Res. 2001, 33, 307. (b) Klotz, O.; Park, J. K.; Pleyer, U.; Hartmann, C.; Baatz, H. Graefe's Arch. Clin. Exp. Ophthalmol. 2000, 238, 88.
- (a) Badger, A. M.; Blake, S.; Kapadia, R.; Sarkar, S.; Levin, J.; Swift, B. A.; Hoffman, S. J.; Stroup, G. B.; Miller, W. H.; Gowen, M.; Lark, M. W. Arthritis Rheum.
 2001, 44, 128. (b) Storgard, C. M.; Stupack, D. G.; Jonczyk, A.; Goodman, S. L.; Fox, R. I.; Cheresh, D. A. J. Clin. Invest. 1999, 103, 47.
- Carron, C. P.; Meyer, D. M.; Pegg, J. A.; Engleman, V. W.; Nickols, M. A.; Settle, S. L.; Westlin, W. F.; Ruminski, P. G.; Nickols, G. A. Cancer Research 1998, 58, 1930.
- Pitts, W. J.; Wityak, J.; Smallheer, J. M.; Tobin, A. E.; Jetter, J. W.; Buynitsky, J. S.; Harlow, P. P.; Solomon, K. A.; Corjay, M. H.; Mousa, S. A.; Wexler, R. R.; Jadhav, P. K. J. Med. Chem. 2000, 43, 27.